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ABSTRACT

This paper presents a new improved attack on RSA based on Wiener's technique

using continued fractions. In the RSA cryptosystem with public modulus N = pq,

public key e and secret key d, if d < 1
3
N

1
4 , Wiener's original attack recovers the secret

key d using the convergents of the continued fraction of e
N
. Our new method uses the

convergents of the continued fraction of e
N′ instead, where N ′ is a number depending

on N . We will show that our method can recover the secret key if d2e < 8N
3
2 , so if

either d or e is relatively small the RSA encryption can be broken. For e ≈ N t, our

method can recover the secret key if d < 2
√
2N

3
4
− t

2 and certainly for d < 2
√
2N

1
4 .

Our experiments demonstrate that for a 1024-bit modulus RSA, our method works

for values of d of up to 270 bits compared to 255 bits for Wiener.

Keywords: RSA, Wiener's attack, continued fractions.
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1. Introduction

The RSA public-key cryptosystem is one of the most popular systems in
use today. The key setup involves picking two large prime numbers p, q to
form a product N = pq and selecting two integers e, d < φ(N) = (p− 1)(q− 1)
such that ed = 1 (mod φ(N)). Messages can be encrypted using the public key
(N, e), whereas ciphertexts can be decrypted using the secret key (p, q, d). It
is well known that RSA is not secure if the secret key d is relatively small.

An attack on RSA with low secret key d was given by Wiener (Wiener,
1990) about 25 years ago. Wiener showed that using continued fractions, one
can e�ciently recover the secret key d from the public information (N, e) as

long as d < 1
3N

1
4 (see also (Boneh and Durfee, 2000, Nassr et al., 2008)). In

2005, Steinfeld et al (Steinfeld et al., 2005) showed that for linear attack N
1
4

is the best bound in the sense that for any �xed ε > 0 and all su�ciently
large modulus lengths, Wiener's attack succeeds with negligible probability
over a random choice of d < Nδ as soon as δ > 1

4 + ε. Exploiting a non-linear
equation satis�ed by the secret key, Boneh and Durfee (Boneh and Durfee,
2000) presented a lattice-based attack that succeeds in polynomial-time when
d < N0.292.

In this paper, we present a new improved attack on RSA based on Wiener's
technique using continued fractions. As in Wiener's original attack, our method
only uses the public information (N, e). The di�erence between our attack and
Wiener's is that in Wiener's attack one is searching the convegents of the
continued fraction of e

N whereas in ours, one is searching the convegents of the
continued fraction of e

N ′ where N
′ is given by

N ′ =

[
N − (1 +

3

2
√
2
)N

1
2 + 1

]

We will show that our method can recover the secret key if d2e < 8N
3
2 . So

if e ≈ N t, then our method can recover the secret key if d < 2
√
2N

3
4−

t
2 and

certainly for d < 2
√
2N

1
4 � which is more than 8 times the Wiener's bound.

In Figure 1, the shaded part shows the area where our method is better than
Wiener's (Wiener, 1990) and Boneh�Durfee's (Boneh and Durfee, 2000) ones.

There are other variants of Wiener's attack but these attacks need more than
just the public information (N, e). For example, De Weger's attack (De Weger,
2002) exploited the small distance between the two RSA's secret primes: if

|p− q| = Nβ and d = Nδ then d can be recovered if 2− 4β < δ < 1−
√

2β − 1
2
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A New Attack on the RSA Cryptosystem Based on Continued Fractions

Figure 1: Comparison between our method and Wiener's (Wiener, 1990) and Boneh�Durfee's
(Boneh and Durfee, 2000) ones.

or δ < 1
6 (4β + 5) − 1

3

√
(4β + 5)(4β − 1). The Blömer and May (Blömer and

May, 2004) attack assumed a linear relation between e and φ(N): ex + y = 0

mod φ(N) with either 0 < x < 1
3N

1
4 and y = O(N− 3

4 ex) (their Theorem 2) or

x < 1
3

√
φ(N)
e

N
3
4

p−q and |y| ≤
p−q

φ(N)N
1
4
ex (their Theorem 4). These conditions are

much more complex than ours: d2e < 8N
3
2 , particularly because they have in

addition to p, q and d the unknown x and y. For the case x = d and y = −1,
used by Wiener and us, our result is better than Blömer�May's Theorem 2
result and also better than their Theorem 4 result if 9

8 < p
q < 2, and theirs

is better if 1 < p
q <

9
8 . Nassr et al's (Nassr et al., 2008) attack required an

approximation po ≥
√
N of the prime p with |p− p0| ≤ 1

8n
α, α ≤ 1

2 , δ <
1−α
2 .

The Blömer and May (Blömer and May, 2001) attack is a variant of the
Boneh-Durfee attack (Boneh and Durfee, 2000) which works for d < N0.29.
Using an exhaustive search of about 8+2b bits, Verheul and van Tilborg (Ver-

heul and van Tilborg, 1997) improved Wiener's bound to d < 2bN
1
4 . Another

exponential time attack similar to this is due to Dujella (Dujella, 2004).

The rest of the paper is organized as follows. In Section 2, we review

Malaysian Journal of Mathematical Sciences 47
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some preliminary results on continued fractions and Wiener's attack. Section
3 presents our main result which says that the RSA encryption system is not
secure if e ≈ N t and d < 2

√
2N

3
4−

t
2 . As t < 1, this means that RSA encryption

is not secure for d < 2
√
2N

1
4 compared to Wiener's result of d < 1

3N
1
4 . In

Section 4, we show our experiment result with a 1024-bit modulus and 270-bit
secret key. We show that our usage of continued fraction of e

N ′ is essential
because if we use the continued fraction expansion of e

N as in Wiener's attack
then the secret key cannot be found.

2. Preliminaries

RSA is a public-key cryptosystem widely used for secure data transmission.
In general, such a cryptosystem consists of two functions, encrypt and decrypt.
The encryption function takes a public encryption key e and a message m and
outputs a ciphertext

c = encrypte(m),

the decryption function is the inverse function, which takes a secret decryption
key d and a ciphertext c and outputs back the original message

m = decryptd(c).

The algorithm is called a public-key cryptosystem because the encryption key
is made public and the decryption key is kept secret. It means that anyone
can encrypt messages but only the owner of the secret decryption key can read
them.

RSA Key Generation algorithm

• Choose two distinct prime numbers p and q of similar bit-length.

• Compute N = pq, φ(N) = (p− 1)(q − 1)

• Choose e such that (e, φ(N)) = 1

• Determine d = e−1 (mod φ(N))

• Keep p, q, d secret, publish N, e.

RSA Encryption-Decryption algorithm

• For a message m ∈ (1, N), the ciphertext c is

c = me (mod N)

48 Malaysian Journal of Mathematical Sciences
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• For a ciphertext c ∈ (1, N), the message m is determined as

m = cd (mod N)

The complexity of the decryption algorithm is based on the size of the
decryption key d. In a cryptosystem with a limited resource such as a credit
card, it is desirable to have a smaller value of d. Wiener's attack, uses the
continued fraction method to expose the private key d when d is small (d <
1
3N

1
4 ).

A continued fraction is an expression of the form

x = a0 +
1

a1 +
1

. . . +
1

an

The continued fraction expansion of a number is formed by subtracting
away the integer part of it and inverting the remainder and then repeating this
process again and again. For example,

2000

123
= 16 +

32

123
= 16 +

1
123
32

= 16 +
1

3 +
27

32

= 16 +
1

3 +
1
32
27

= 16 +
1

3 +
1

1 +
5

27

= 16 +
1

3 +
1

1 +
1
27
5

= 16 +
1

3 +
1

1 +
1

5 +
2

5

= 16 +
1

3 +
1

1 +
1

5 +
1
5
2

= 16 +
1

3 +
1

1 +
1

5 +
1

2 +
1

2

As we have seen above, the coe�cients ai of the continued fraction of a
number x are constructed as follows:

x0 = x, an = [xn], xn+1 =
1

xn − an

Malaysian Journal of Mathematical Sciences 49
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We use the following notation to denote the continued fraction

x = [a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an

If k ≤ n, the continued fraction [a0, a1, . . . , ak] is called the kth convergent
of x. The following theorem gives us the fundamental recursive formulas to
calculate the convergents.

Theorem 2.1. The kth convergent can be determined as

[a0, . . . , ak] =
pk
qk

where the sequences {pn} and {qn} are speci�ed as follows1:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, ∀n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, ∀n ≥ 0.

The following theorem (Hardy and Wright, 1979) is the basis for Wiener's
attack.

Theorem 2.2. Let p, q be positive integers such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2

then p
q is a convergent of the continued fraction of x.

The following theorem summarises Wiener's attack (Boneh and Durfee,
2000, Wiener, 1990).

Theorem 2.3. In a RSA algorithm, if the following conditions are satis�ed

• q < p < 2q (i.e. p and q are two primes of the same bit size)

• 0 < e < φ(N)

1The convergents start with p0
q0
, but it is a convention to extend the sequence index to

−1 and −2 to allow the recursive formula to hold for n = 0 and n = 1

50 Malaysian Journal of Mathematical Sciences
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• ed− kφ(N) = 1

• d <
1

3
N

1
4

then k
d is a convergent of e

N . Thus, the secret information p, q, d, k can be
recovered from public information (e,N).

Since e
N has O(log(N)) number of convergents, Wiener's algorithm will

succeed to factor N and output p, q, d, k in O(log(N)) time complexity.

Example 1. In the following example, we have a 1024-bit modulus N , the
upper bound 1

3N
1
4 in Theorem 2.3 is 255-bit, d is 255-bit and we have found

the convergent c149 = p149
q149

= k
d as asserted by Theorem 2.3.

p 12137
2429807756 5612551149 2629609691 9449141205 8680156593
9661850265 4224438815 0519802020 4979508724 3102230079
9409502534 6163494126 0471531617 7098769594 1320931493 512 bits

q 9201
0524322086 3900671386 8662660639 9738950237 2692456878
2613825773 8431082681 6215281513 7070448098 3908271161
4206768781 4447541784 7243525840 6453897707 3778553491 512 bits

N 111675409
0485730823 5978712392 1718417590 8091542898 6532382066
5485087798 8534958587 2419428390 8818158158 7258671440
7683378413 7900981405 8406611299 6495087782 9075022344
5692173775 8022280271 1775885570 7370037539 5363272503
0411307566 7128393688 9712399229 9533595050 1425299028
6693467091 9270372721 8720248761 5489260235 4246992063 1024 bits

φ(N) 111675409
0485730823 5978712392 1718417590 8091542898 6532382066
5485087798 8534958587 2419428390 8818158158 7258671440
7683378413 7900981405 8406611299 6495087782 9075001006
2738043932 8509057735 0483615238 8181946096 3990659030
8135631527 4472872192 2977315695 7483638227 4414797787
3077195775 8659336811 1005191303 1936592933 9147507080 1024 bits

Theorem 2.3 bound 3426637 2625316286 2968546235
1
3N

1
4 7247145632 3454416288 1157194267 8892540948 5361638977 255 bits

e 45643085
8324017120 3133152071 1529402253 9055348712 7592566099
1853899212 7134329984 8723684744 2845550165 4714497720
7173865355 1358820024 8341016147 1746464324 1362580067
0745402653 2892481331 8307985083 2822164891 3129959216
3726940854 8355291478 1683701096 4254131032 8949699809
7582249761 4243019490 2375579169 7150271910 4226716997 1023 bits

d 3426637 2625316286 2968546235
7247145632 3454416288 1157194267 8892540948 5361638973 255 bits

k 1400507 9544612205 2131699024
5626308122 5492430329 4046240953 0743691100 4314600526 253 bits

convergent of e
N found c149 =

p149
q149

= k
d

Malaysian Journal of Mathematical Sciences 51
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3. A New Improved Attack Based on

Continued Fractions

In this section, we present our main result. Instead of using the convergents
of the continued fraction of e

N as in the Wiener's original attack, we will use
the convergents of the continued fraction of e

N ′ where N
′ is given by

N ′ =

[
N − (1 +

3

2
√
2
)N

1
2 + 1

]

We will show that for e ≈ N t, the secret key can be recovered if d <
2
√
2N

3
4−

t
2 .

First, we need the following auxiliary result.

Lemma 3.1. For N > 2000000,

( 3√
2
− 2)N

1
2 + 4

2(N − 3√
2
N

1
2 )2

<
1

16N
3
2

.

Proof. We have

( 3√
2
− 2)N

1
2 + 4

2(N − 3√
2
N

1
2 )2

<
1

16N
3
2

⇔ 8N
1
2 ((

3√
2
− 2)N

1
2 + 4) < (N

1
2 − 3√

2
)2

⇔ (12
√
2− 16)N + 32N

1
2 < N − 3

√
2N

1
2 +

9

2

⇔ (32 + 3
√
2)N

1
2 < (17− 12

√
2)N +

9

2

⇔ 32 + 3
√
2

17− 12
√
2
< N

1
2 +

9

2(17− 12
√
2)N

1
2

This is true because N > 200000 >
(

32+3
√
2

17−12
√
2

)2
. �
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This is our main theorem.

Theorem 3.1. In a RSA algorithm, if the following conditions are satis�ed

• q < p < 2q

• 0 < e < φ(N)

• ed− kφ(N) = 1

• N > 2000000

• d < 2
√
2

(
N

e

) 1
2

N
1
4

and

N ′ =

[
N − (1 +

3

2
√
2
)N

1
2 + 1

]
then k

d is a convergent of e
N ′ . Thus, the secret information p, q, d, k can be

recovered from public information (e,N).

Proof. Let φ1 = N + 1 − 3√
2
N

1
2 and φ2 = N + 1 − 2N

1
2 . It follows from

q < p < 2q that 1 <
√

p
q <
√
2, so since the function f(x) = x+ 1

x is increasing

on [1,+∞),

2 <
p+ q

N
1
2

=

√
p

q
+

√
q

p
<
√
2 +

1√
2
=

3√
2

2N
1
2 < p+ q <

3√
2
N

1
2

φ1 = N + 1− 3√
2
N

1
2 < φ(N) < N + 1− 2N

1
2 = φ2

Let φmid = N − (1+ 3
2
√
2
)N

1
2 +1, then φmid is the midpoint of the interval

[φ1, φ2] and N
′ = [φmid]. Since φ(N) ∈ (φ1, φ2),

|φ(N)−N ′| < |φ(N)− φmid|+ |φmid −N ′| <
1

2
(φ2 − φ1) + 1 =

1

2
(φ2 − φ1 + 2)

Malaysian Journal of Mathematical Sciences 53
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We have∣∣∣∣ eN ′ − k

d

∣∣∣∣ = ∣∣∣∣( eN ′ − e

φ(N)
) + (

e

φ(N)
− k

d
)

∣∣∣∣ = ∣∣∣∣e(φ(N)−N ′)
N ′φ(N)

+
1

dφ(N)

∣∣∣∣
=

∣∣∣∣e(φ(N)−N ′)
N ′φ(N)

+
e

φ(N)(kφ(N) + 1)

∣∣∣∣
<
e|φ(N)−N ′|
N ′φ(N)

+
e

φ(N)(kφ(N) + 1)

<
e(φ2 − φ1 + 2)/2

φ21
+

e

φ21
<
e(φ2 − φ1 + 4)

2(φ1 − 1)2
= e

( 3√
2
− 2)N

1
2 + 4

2(N − 3√
2
N

1
2 )2

For N > 2000000, by Lemma 3.1, we have

( 3√
2
− 2)N

1
2 + 4

2(N − 3√
2
N

1
2 )2

<
1

16N
3
2

.

Therefore, ∣∣∣∣ eN ′ − k

d

∣∣∣∣ < e

16N
3
2

<
1

2d2
. �

The boxed condition in Theorem 3.1 amounts to d2e < 8N
3
2 , so if either d

or e is relatively small then RSA encryption can be broken. When e is relatively
small, the Wiener attack cannot be applied, whereas ours can.

This result is super�cially like that of Blömer-May (Blömer and May, 2004)(The-
orem 4), which is

Theorem 3.2. (Blömer and May, 2004) Given an RSA public key tuple (N, e),
where N = pq. Suppose that e satis�es an equation ex + y = 0 (mod φ(N))
with

0 < x ≤ 1

3

√
φ(N)

e

N
3
4

p− q
and |y| ≤ p− q

φ(N)N
1
4

ex

then N can be factored in time polynomial in logN .

With x = d and y = −1, these conditions amount to

ed2 <
φ(N)N

3
2

9(p− q)2
(1)
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and
φ(N)N

1
4 < (p− q)ed, (2)

whereas our only condition is ed2 < 8N
3
2 . Let R be the ratio between our

bound and Blömer-May's bound (1)

R =
8N

3
2

φ(N)N
3
2

9(p−q)2

=
72(p− q)2

φ(N)

then

R =
N

φ(N)

72(p− q)2

pq
=

N

φ(N)

72(pq − 1)2

p
q

Since q < p < 2q, the quotient p
q ranges in the interval (1, 2). Consider the

graph of the function f(x) = 72(x−1)2
x for x ∈ (1, 2), we can see that f(x) < 1

for x ∈ (1, 98 ) and f(x) > 1 for x ∈ ( 98 , 2). Therefore, if p
q ∈ ( 98 , 2) then

R = N
φ(N)f(

p
q ) > 1 and our bound is better than Blömer-May's bound. Our

experiment result in Section 4 also con�rms this.

From Theorem 3.1, we have

Corollary 3.1. In a RSA algorithm, if the following conditions are satis�ed

• q < p < 2q

• 0 < e < φ(N)

• ed− kφ(N) = 1

• N > 2000000

• d < 2
√
2N

1
4

and

N ′ =

[
N − (1 +

3

2
√
2
)N

1
2 + 1

]
then k

d is a convergent of e
N ′ . Thus, the secret information p, q, d, k can be

recovered from public information (e,N).

Note that Corollary 3.1 has d < 2
√
2N

1
4 while Wiener's result had d <

1
3N

1
4 .
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4. Experiment Result

We will use the same 1024-bit modulus as in Example 1. With this 1024-bit
modulus, the Wiener's upper bound 1

3N
1
4 is 255-bit. Here, we show an example

of a 270-bit secret key.

N 111675409
0485730823 5978712392 1718417590 8091542898 6532382066
5485087798 8534958587 2419428390 8818158158 7258671440
7683378413 7900981405 8406611299 6495087782 9075022344
5692173775 8022280271 1775885570 7370037539 5363272503
0411307566 7128393688 9712399229 9533595050 1425299028
6693467091 9270372721 8720248761 5489260235 4246992063 1024 bits

Theorem 3.1 111675409
N ′ 0485730823 5978712392 1718417590 8091542898 6532382066

5485087798 8534958587 2419428390 8818158158 7258671440
7683378413 7900981405 8406611299 6495087782 9075000568
2159570564 0981693044 2093595665 5130899532 7328449321
6820552021 8559771355 1247634195 5201901221 0109431097
4104405733 7196789666 1898135689 1959781693 7504572404 1024 bits

e 9497738493 9533670765 7042840968 7659484313 7084252195
6357612333 8847198573 4448278894 7630928901 1796460405
3837337081 2904542700 5252696553 0732537894 7443876974
8735584808 1502373619 6458971201 9372820861 3917977593
0646731395 1290537294 6709829003 9830064227 6485488318
8298864198 1593551375 9303722339 5282843022 6076170323 997 bits

d 16 8426074727 9546104062 9984578341
1702121043 1469393463 8412655292 6172702449 5099104827 270 bits

k 1432 4253002139 3318566580
1576488907 6467402086 1953632340 7603167662 3143713764 244 bits

convergent of e
N not found, ci 6= k

d , ∀i
convergent of e

N′ found c146 =
p146
q146

= k
d

This experiment result shows that our usage of continued fractions of e
N ′

is essential. If we use continued fractions of e
N as in Wiener's original attack

then no convergent ci is found for which ci =
k
d .

For this example, the Blömer and May Theorems 2 and 4 results, with x = d

and y = −1, do not apply as neither of d < 1
3N

1
4 and d < 1

3

√
φ(N)
e

N
3
4

p−q hold.
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